X   Сообщение сайта
(Сообщение закроется через 3 секунды)



 

Здравствуйте, гость (

| Вход | Регистрация )

Открыть тему
Тема закрыта
> Текст залазит за футер
SID_hb
SID_hb
Topic Starter сообщение 18.12.2013, 12:03; Ответить: SID_hb
Сообщение #1


0
Вернуться в начало страницы
 
Ответить с цитированием данного сообщения
SvenSoft
SvenSoft
сообщение 18.12.2013, 12:16; Ответить: SvenSoft
Сообщение #2


В правиле CSS .wrap пропишите свойство: overflow: hidden; и будет вам счастье.
Вернуться в начало страницы
 
Ответить с цитированием данного сообщения
SID_hb
SID_hb
Topic Starter сообщение 18.12.2013, 14:57; Ответить: SID_hb
Сообщение #3


(SvenSoft @ 18.12.2013, 15:16) *
В правиле CSS .wrap пропишите свойство: overflow: hidden; и будет вам счастье.


ну да помогло, но наступил на новые грабли...
Решил добавить шапку, футер уплыл вниз за пределы монитора, ок думаю поменяю в .footer параметр margin-top: -100px; на -200. Ниже футера теперь висть на 100 пикселей блок...

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<!--<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> -->
<title>111</title>
</head>
<body>


<style type="text/css">



html, body {
height: 100%;
width: 100%;
margin: 0px;
padding: 0px;
text-align: center;
}

.page {
width:800px;
margin:0 auto;
min-height: 100%;
height: auto !important;
height: 100%;
background: #999;
}


.wrap {
padding-bottom: 100px;
overflow: hidden;
}


.footer {
height: 100px;
margin-top: -200px;
background: #f00;
}

.menu {
width: 100px;
float: left;
background: #f00;
}

.content {
width: 700px;
float: right;
background: #f00;
}

.head {

background: #f00;
min-width:800px;
max-width:4000px;
height:100px

}




</style>

<div class="head"></div>



<div class="page">
<div class="wrap">

<div class="menu">меню</div>
<div class="content">

<p>
Ярчайшие красные гиганты имеют одинаковую абсолютную звёздную величину ?3.0m±0.2m[19], а значит, подходят на роль стандартных свеч. Наблюдательно первым этот эффект обнаружил Сендидж в 1971 году. Предполагается, что эти звёзды либо находятся на верхней точке первого подъёма ветви красных гигантов звёзд малой массы (меньше солнечной), либо лежат на асимптотической ветви гигантов.
Основным достоинством метода является то, что красные гиганты удалены от областей звёздообразования и повышенной концентрации пыли, что сильно облегчает учёт поглощения. Их светимость также крайне слабо зависит от металличности, как самих звёзд, так и окружающей их среды. Основная проблема данного метода — выделение красных гигантов из наблюдений звёздного состава галактики. Существует два пути её решения[19]:
Классический — метод выделения края изображений. При этом обычно применяют Собелевский фильтр. Начало провала — искомая точка поворота. Иногда вместо собелевского фильтра в качестве аппроксимирующей функции берут гауссиану, а функция выделения края зависит от фотометрических ошибок наблюдений. Однако, по мере ослабления звезды растут и ошибки метода. В итоге предельно измеряемый блеск на две звездных величины хуже, чем позволяет аппаратура.
Второй путь — построение функции светимости методом максимального правдоподобия. Данный способ основывается на том, что функция светимости ветви красных гигантов хорошо аппроксимируется степенной функцией:
\xi(m)\propto 10^{am},
где a — коэффициент, близкий к 0,3, m — наблюдаемая звёздная величина. Основная проблема — расходимость в некоторых случаях рядов, возникающих в результате работы метода максимального правдоподобия[19].</br>

Уникальное свойство квазаров — большие концентрации газа в области излучения. По современным представлениям, аккреция этого газа на чёрную дыру и обеспечивает столь высокую светимость объектов. Высокая концентрация вещества означает и высокую концентрацию тяжёлых элементов, а значит и более заметные абсорбционные линии. Так, в спектре одного из линзируемых квазаров были обнаружены линии воды[39].
Уникальным преимуществом является и высокая светимость в радиодиапазоне, на её фоне поглощение части излучения холодным газом более заметно. При этом газ может принадлежать как родной галактике квазара, так и случайному облаку нейтрального водорода в межгалактической среде, или галактике, случайно попавшей на луч зрения (при этом нередки случаи, когда такая галактика не видна — она слишком тусклая для наших телескопов). Изучение межзвёздного вещества в галактиках данным методом называется «изучением на просвет», к примеру, подобным образом была обнаружена первая галактика со сверхсолнечной металличностью[40].
Также важным результатом применения данного метода, правда не в радио-, а в оптическом диапазоне, являются измерения первичного обилия дейтерия. Современное значение обилия дейтерия, полученное по таким наблюдениям, составляет D/H_p\approx 3\cdot 10^{-5}[41].
С помощью квазаров получены уникальные данные о температуре реликтового фона на z ? 1,8 и на z = 2,4. В первом случае исследовались линии сверхтонкой структуры нейтрального углерода, для которых кванты с T ? 7,5 К (предполагаемая температура реликтового фона на тот момент) играют роль накачки, обеспечивая инверсную заселённость уровней[42]. Во втором случае обнаружили линии молекулярного водорода H2, дейтерида водорода HD, а также молекулы оксида углерода СО, по интенсивности спектра которой как раз и измерили температуру реликтового фона, она с хорошей точностью совпала с ожидаемым значением[43].
Ещё одно достижение, состоявшееся благодаря квазарам — оценка темпа звездообразования на больших z. Сначала, сравнивая спектры двух различных квазаров, а потом сравнивая отдельные участки спектра одного и того же квазара, обнаружили сильный провал на одном из UV участков спектра[44]. Столь сильный провал мог быть вызван только большой концентрацией пыли, поглощающей излучение. Ранее пыль пытались обнаружить по спектральным линиям, но выделить конкретные серии линий, доказывающее, что это именно пыль, а не примесь тяжёлых элементов в газе, не удавалось. Именно дальнейшее развитие этого метода позволило оценить темп звёздообразования на z от ~ 2 до ~ 6[45].</br>

Первым способом изучения крупномасштабной структуры Вселенной, не потерявший своей актуальности, стал так называемый метод «звёздных подсчётов» или метод «звёздных черпков». Суть его в подсчёте количества объектов в различных направлениях. Применён Гершелем в конце XVIII века, когда о существовании далеких космических объектов только догадывались, и единственными объектами, доступными для наблюдений, были звёзды, отсюда и название. Сегодня, естественно, считают не звёзды, а внегалактические объекты (квазары, галактики), и помимо выделенного направления строят распределения по z.
Крупнейшими источниками данных о внегалактических объектах являются отдельные наблюдения конкретных объектов, обзоры типа SDSS, APM, 2df, а также компилятивные базы данных, такие как Ned и Hyperleda. Например, в обзоре 2df охват неба составлял ~ 5 %, среднее z — 0,11 (~ 500 Мпк), количество объектов — ~ 220 000.
Уже на представленном рисунке можно видеть, что галактики расположены в пространстве неоднородно на малых масштабах. После более детального рассмотрения обнаруживается, что пространственная структура распределения галактик — ячеистая: узкие стенки с шириной, определяемой величиной скоплений и сверхскоплений галактик, а внутри этих ячеек — пустоты, так называемые войды[38].
Доминирующим является мнение, что при переходе к масштабам сотен мегапарсек ячейки складываются и усредняются, распределение видимого вещества становится однородным[47][48]. Однако однозначность в этом вопросе пока не достигнута: применяя различные методики некоторые исследователи приходят к выводам об отсутствии однородности распределения галактик вплоть до самых больших исследованных масштабов[49][50]. Вместе с тем, неоднородности в распределении галактик не отменяют факта высокой однородности Вселенной в начальном состоянии, выводимого из высокой степени изотропии реликтового излучения.
Вместе с этим установлено, что распределения количества галактик по красному смещению имеет сложный характер. Зависимость для разных объектов различна. Однако для всех них характерно наличие нескольких локальных максимумов[51][52][53]. С чем это связано — пока не совсем понятно.
До последнего времени не было ясности в том, как эволюционирует крупномасштабная структура Вселенной. Однако работы последнего времени показывают, что первыми сформировались крупные галактики, и только потом уже мелкие (так называемый downsizing-эффект)[54][55].</br>
</p>
</div>







</div>
</div>




<div class="footer">Нижняя часть</div>
</body>
</html>
Вернуться в начало страницы
 
Ответить с цитированием данного сообщения
SvenSoft
SvenSoft
сообщение 18.12.2013, 18:11; Ответить: SvenSoft
Сообщение #4


По хорошему вот так:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>111</title>
<style type="text/css">
html, body {
height:100%;
width:100%;
margin:0px;
padding:0px;
text-align:center;
}
.page {
position:relative;
width:800px;
margin:-100px auto;
min-height:100%;
height:auto !important;
height:100%;
background:#999;
z-index:1;
}
.wrap {
padding:100px 0;
overflow:hidden;
}
.footer {
position:relative;
height:100px;
background:#0f0;
z-index:3;
}
.menu {
width:100px;
float:left;
background:#f00;
}
.content {
width:700px;
float:right;
background:#ff0;
}
.head {
position:relative;
background:#00f;
min-width:800px;
max-width:4000px;
height:100px;
z-index:2;
}
</style>
</head>
<body>
<div class="head"></div>

<div class="page">
<div class="wrap">
<div class="menu">меню</div>
<div class="content">
<!--<p>
Ярчайшие красные гиганты имеют одинаковую абсолютную звёздную величину ?3.0m±0.2m[19], а значит, подходят на роль стандартных свеч. Наблюдательно первым этот эффект обнаружил Сендидж в 1971 году. Предполагается, что эти звёзды либо находятся на верхней точке первого подъёма ветви красных гигантов звёзд малой массы (меньше солнечной), либо лежат на асимптотической ветви гигантов.
Основным достоинством метода является то, что красные гиганты удалены от областей звёздообразования и повышенной концентрации пыли, что сильно облегчает учёт поглощения. Их светимость также крайне слабо зависит от металличности, как самих звёзд, так и окружающей их среды. Основная проблема данного метода — выделение красных гигантов из наблюдений звёздного состава галактики. Существует два пути её решения[19]:
Классический — метод выделения края изображений. При этом обычно применяют Собелевский фильтр. Начало провала — искомая точка поворота. Иногда вместо собелевского фильтра в качестве аппроксимирующей функции берут гауссиану, а функция выделения края зависит от фотометрических ошибок наблюдений. Однако, по мере ослабления звезды растут и ошибки метода. В итоге предельно измеряемый блеск на две звездных величины хуже, чем позволяет аппаратура.
Второй путь — построение функции светимости методом максимального правдоподобия. Данный способ основывается на том, что функция светимости ветви красных гигантов хорошо аппроксимируется степенной функцией:
\xi(m)\propto 10^{am},
где a — коэффициент, близкий к 0,3, m — наблюдаемая звёздная величина. Основная проблема — расходимость в некоторых случаях рядов, возникающих в результате работы метода максимального правдоподобия[19].</br>

Уникальное свойство квазаров — большие концентрации газа в области излучения. По современным представлениям, аккреция этого газа на чёрную дыру и обеспечивает столь высокую светимость объектов. Высокая концентрация вещества означает и высокую концентрацию тяжёлых элементов, а значит и более заметные абсорбционные линии. Так, в спектре одного из линзируемых квазаров были обнаружены линии воды[39].
Уникальным преимуществом является и высокая светимость в радиодиапазоне, на её фоне поглощение части излучения холодным газом более заметно. При этом газ может принадлежать как родной галактике квазара, так и случайному облаку нейтрального водорода в межгалактической среде, или галактике, случайно попавшей на луч зрения (при этом нередки случаи, когда такая галактика не видна — она слишком тусклая для наших телескопов). Изучение межзвёздного вещества в галактиках данным методом называется «изучением на просвет», к примеру, подобным образом была обнаружена первая галактика со сверхсолнечной металличностью[40].
Также важным результатом применения данного метода, правда не в радио-, а в оптическом диапазоне, являются измерения первичного обилия дейтерия. Современное значение обилия дейтерия, полученное по таким наблюдениям, составляет D/H_p\approx 3\cdot 10^{-5}[41].
С помощью квазаров получены уникальные данные о температуре реликтового фона на z ? 1,8 и на z = 2,4. В первом случае исследовались линии сверхтонкой структуры нейтрального углерода, для которых кванты с T ? 7,5 К (предполагаемая температура реликтового фона на тот момент) играют роль накачки, обеспечивая инверсную заселённость уровней[42]. Во втором случае обнаружили линии молекулярного водорода H2, дейтерида водорода HD, а также молекулы оксида углерода СО, по интенсивности спектра которой как раз и измерили температуру реликтового фона, она с хорошей точностью совпала с ожидаемым значением[43].
Ещё одно достижение, состоявшееся благодаря квазарам — оценка темпа звездообразования на больших z. Сначала, сравнивая спектры двух различных квазаров, а потом сравнивая отдельные участки спектра одного и того же квазара, обнаружили сильный провал на одном из UV участков спектра[44]. Столь сильный провал мог быть вызван только большой концентрацией пыли, поглощающей излучение. Ранее пыль пытались обнаружить по спектральным линиям, но выделить конкретные серии линий, доказывающее, что это именно пыль, а не примесь тяжёлых элементов в газе, не удавалось. Именно дальнейшее развитие этого метода позволило оценить темп звёздообразования на z от ~ 2 до ~ 6[45].</br>

Первым способом изучения крупномасштабной структуры Вселенной, не потерявший своей актуальности, стал так называемый метод «звёздных подсчётов» или метод «звёздных черпков». Суть его в подсчёте количества объектов в различных направлениях. Применён Гершелем в конце XVIII века, когда о существовании далеких космических объектов только догадывались, и единственными объектами, доступными для наблюдений, были звёзды, отсюда и название. Сегодня, естественно, считают не звёзды, а внегалактические объекты (квазары, галактики), и помимо выделенного направления строят распределения по z.
Крупнейшими источниками данных о внегалактических объектах являются отдельные наблюдения конкретных объектов, обзоры типа SDSS, APM, 2df, а также компилятивные базы данных, такие как Ned и Hyperleda. Например, в обзоре 2df охват неба составлял ~ 5 %, среднее z — 0,11 (~ 500 Мпк), количество объектов — ~ 220 000.
Уже на представленном рисунке можно видеть, что галактики расположены в пространстве неоднородно на малых масштабах. После более детального рассмотрения обнаруживается, что пространственная структура распределения галактик — ячеистая: узкие стенки с шириной, определяемой величиной скоплений и сверхскоплений галактик, а внутри этих ячеек — пустоты, так называемые войды[38].
Доминирующим является мнение, что при переходе к масштабам сотен мегапарсек ячейки складываются и усредняются, распределение видимого вещества становится однородным[47][48]. Однако однозначность в этом вопросе пока не достигнута: применяя различные методики некоторые исследователи приходят к выводам об отсутствии однородности распределения галактик вплоть до самых больших исследованных масштабов[49][50]. Вместе с тем, неоднородности в распределении галактик не отменяют факта высокой однородности Вселенной в начальном состоянии, выводимого из высокой степени изотропии реликтового излучения.
Вместе с этим установлено, что распределения количества галактик по красному смещению имеет сложный характер. Зависимость для разных объектов различна. Однако для всех них характерно наличие нескольких локальных максимумов[51][52][53]. С чем это связано — пока не совсем понятно.
До последнего времени не было ясности в том, как эволюционирует крупномасштабная структура Вселенной. Однако работы последнего времени показывают, что первыми сформировались крупные галактики, и только потом уже мелкие (так называемый downsizing-эффект)[54][55].</br>
</p>--
>
</div>
</div>
</div>

<div class="footer">Нижняя часть</div>
</body>
</html>


Замечание модератора:
Эта тема была закрыта автоматически ввиду отсутствия активности в ней на протяжении 100+ дней.
Если Вы считаете ее актуальной и хотите оставить сообщение, то воспользуйтесь кнопкой
или обратитесь к любому из модераторов.
Вернуться в начало страницы
 
Ответить с цитированием данного сообщения
Открыть тему
Тема закрыта
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0


Свернуть

> Похожие темы

  Тема Ответов Автор Просмотров Последний ответ
Открытая тема (нет новых ответов) ИИ текст - работает или нет?
16 Vmir 4429 16.4.2025, 13:58
автор: inturist
Горячая тема (нет новых ответов) Текст для сайта на английском языке
33 D007user 19208 26.1.2022, 17:16
автор: D007
Горячая тема (нет новых ответов) Копирайтинг и рерайт: качественный сео-текст по доступной цене!
374 Sostavitel 205356 18.1.2022, 23:46
автор: Sostavitel
Открытая тема (нет новых ответов) Эффективный копирайтинг. Продающие и инфостатьи, лэндинги. Текст для презентации и видео. Студенческие работы. Наполнение сайтов с нуля
7 лет в сфере, более 77 млн знаков за спиной
1 ELECTROKATZE 3752 11.6.2021, 18:48
автор: icoder
Открытая тема (нет новых ответов) Опытный копирайтер создаст для Вас любой текст
14 mkreine 4552 7.10.2020, 22:20
автор: mkreine


 



RSS Текстовая версия Сейчас: 24.4.2025, 4:25
Дизайн